Selective transfection of microglia in the brain using an antibody-based non-viral vector.

نویسندگان

  • J Malmevik
  • M-L Rogers
  • M Nilsson
  • Y Nakanishi
  • R A Rush
  • N R Sims
  • H Muyderman
چکیده

There are currently few approaches to transiently manipulate the expression of specific proteins in microglia of the brain. An antibody directed against an extracellular epitope of scavenger receptor class B, type I (SR-BI) was found to be selectively taken up by these cells in the brain. Other antibodies tested were not internalised by microglia. A vector was produced by linking the SR-BI antibody to polyethyleneimine and binding a DNA plasmid encoding green fluorescent protein. Infusions of this vector into the hippocampus produced a widespread transfection of cells, more than 80% of which were immunoreactive for microglial/macrophage markers. Transfection was not detected in cells expressing markers for astrocytes or neurons. Reporter gene expression was most prominent near the infusion site but was seen in tissue up to 4mm away. DNA bound to polyethyleneimine alone or to a vector containing a different antibody did not produce transfection in the brain. Single injections of the vector containing the SR-BI antibody into the brain also resulted in transfection of microglia, albeit with lower efficiency. Vector modifications to promote lysis of endosomes or entry of DNA into the nucleus did not increase efficiency. The findings clearly demonstrate the capacity of the SR-BI antibody to selectively target brain microglia. This approach offers considerable potential to deliver DNA and other molecules capable of modifying the function of these cells in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of non-viral vehicles for targeted gene transfer into microglia via the integrin receptor CD11b

Microglial activation is a central event in neurodegeneration. Novel technologies are sought for that specifically manipulate microglial function in order to delineate their role in onset and progression of neuropathologies. We investigated for the first time whether non-viral gene delivery based on polyethyleneglycol-polyethyleneimine conjugated to the monoclonal anti-CD11b antibody OX42 ("OX4...

متن کامل

Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector

It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...

متن کامل

Preparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine

Objective(s): Although viral vectors are considered efficient gene transfer agents, their board application has been limited by toxicity, immunogenicity, mutagenicity and small gene carrying capacity. Non-viral vectors are safe but they suffer from low transfection efficiency. In the present study, polyallylamine (PAA) in two molecular weights (15 and 65 kDa) was modified by alkane derivatives ...

متن کامل

Production of monoclonal antibody against recombinant NS3 protein of bovine viral diarrhea virus (NADL strain)

Bovine Viral Diarrhea virus (BVDV) is an important viral pathogen of cattle causing several clinical syndromes. There are usually no pathognomonic clinical signs of BVDV infection. Diagnostic investigations therefore rely on serological detection and virus isolation. Nonstructural protein 3 (NS3) as immunogenic protein of BVDV is genetically and antigenically conserved among different isolates....

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1586  شماره 

صفحات  -

تاریخ انتشار 2014